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ON FORMULATIONS OF THE PROBLEM OF THE THEORY OF PLASTICITY* 

Ia. A. KAMBNIARZH 

Formulation of the problem of the theory of perfect plasticity includes the defini- 
tion of a set of virtual (sample) velocity fields. In the definition of the latter 
for an incompressible medium we may or may not include the solenoidality require- 
ment. Both variants result in different but connected statements of the problem. 
In this paper are presented and briefly considered statements on the quasi-static 
problem of perfectly plastic incompressible bodies. The equivalence of 
various formulations is established. This enables the selection for computation of 
this or that formulation of the problem, which may be important, owing to the com- 
putational nonequivalence in various situations. 

Sample velocity fields and statically admissible stress fields. Let an in- 

compressible medium occupy the region 8i.n R" (n= 2,3) and be subjected to mass forces of 
density Y defined in 51, and a surface load of density q defined on part S, of the boundary 
of region Q. Let also S, = K2 \ S,,S,= 22 \ S,, where the stroke denotes the closing in R”, 
and the velocity is defined on S, (e.g., S, is fixed). 

The stress fields are considered in 52 from space S, and it is subsequently assumedstress 
components are at least summable in the square on 8. The statically admissible for the load 
{f,q} is called the stress field IJ from S which balances it; the conditions of equilibrium 

in region Q and at its boundari?s may be written in the form of an equation of the principle 
of virtual velocities 

Sa.eds- Sfvdr- s qvds=O,VvEV 
l2 

eij-+-($+$~+ i,j=l,Z,...,n 

where V is the set of virtual (sample) velocity fields and mi are Cartesian coordinates in R”. 
Let 2: be a set of self-balancing (i.e. balancing the load f = 0,q = 0) of the stress 

fields. 

2-E(P,S,)=(E(V))"-{e&: ~o.eds==;O VeeE(V)} 
P 

where E(V) is the aggregate of deformation rate fields that correspond to velocity fields 

from V. If s is some stress field from S that balances the load {f,q} then E+s is the 

aggregate of all statically admissible stress fields. 
For incompressible media two sets of sample velocity fields are used 

Vr=V'(SJ,S,)=(~~C~(~):divu=O,u~s~=0} il) 

V~=V*(n,S,)=(u~C"(~:u~s~=O} 

To the self-balancing stress fields correspond the sets Z' = (E (VI)& T = (E (V2))0. To 

the same sets El, 22 results the use in the capacity of V for closing V',V* in H'(Q) of 

sets Vl,V*, respectively. 
The following sets of velocity fields were considered in /2/: 

Ul = U1 (~2, Sv) = [(u E C” (3) : div u = 0, p (supp u, S,) > O)IH~(Q, 

u2 = us (12, Sa) = [(II E cm (5) : p (supp “, q, > O)l,y,, 
W~=W’(Q,S,)=(nEH*(61):divu=O, ulsu=O) 

W?=W~(R,S~)=(uEH~(sl):uIS =OJ 
” 

where p is the distance in ~n,suppu is the carrier of function u,I.4JHYO) is the Closure of 
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set A in HI(Q) ad the conditions for which the relations I?= W1,Uz= W”. The reSUltS Of /3/ 
were used and the respective consideration was carried out in the case of as2 = s,. Subsequ- 

ently we limit ourselves to the case in which the preceding equalities are valid. Note that 

then VI.82 coincide, respectively, with Ul= WI and UB= Wz and, consequently, the sets of 
self-balancing stress fields E',Z' do not change, if in the definition of VI and Ve for con- 

dition v/s = 0 we substitute the condition for vanishing of u in certain neighborhood of the 
set rn in' c 

Evidently any a from EZ belongs to 2'. On the other hand, under certain conditions on 
B,S, for any T from 2' a pressure field will be found p E&(8) such that r i-pg (6 is the 

metric tensor) belongs to P/2/. Subsequently this property will be used for proving the 
equivalence of various statements of the problem of the theory of perfect plasticity. 

Quasi-static problem of the theory of perfect plasticity. Let region Abbe fil- 
led by an incompressible, rigid-perfectly plastic medium. To each point I from B corresponds 
a cylinder C, of admissible (not emerging beyond the yield surface) stresses in the space of 
second rank symmetric tensors. The yield surface is the boundary of that cylinder. Let a(r) 
be the stress at point x; we shall denote by indices d and s the deviatoric and spherical 
components of tensors. The a(x) is admissible, if a(z) belongs to set C, or, what is the 

same, ad(x) belongs to C,", where Cxd is the set that corresponds to cylinder C, in the space 
of deviators of second rank symmetric tensors. 

Since the body is not assumed homogeneous, hence the sets C,d for various points of the 
body are generally not the same. Let for all z from g the sets C,d be convex, closed, con- 
tain the set (a:a=ad, ad.ed~P),r>O, and be contained in the set {a: u = ad, odeod <R’). 
The mapping x+C,d is assumed measurable /4/. 

For definiteness we shall consider the case when s, is fixed (the case of nonuniform kine- 
matic conditions on S, is similarly considered, if the load {I, q) is below the limit, if it 
is at the limit, the quasi-staticproblem may have no solution /5,6/ when the kinematic condi- 
tions are nonuniform). 

Let E be the set of kinematically admissible deformation rates. It lies in space F, and 
on S X F the bilinear form (.,e> is d f'n e i ed, which for summable u,e from these spaces as- 
sumes the value 

(U,e) =Su(x).e(x)dx 
P 

Let A" be the polar line of set A (relative to the pair 
assume that the relation E(V)E;E~(E(V))=, where Vis the 
satisfied for E. Then x = (E(V))" = E". 

If s is some stress vector field from S that balances a 
quasi-static problem of the theory of perfect plasticity for 
finding a pair u,e that satisfies the conditions 

s,F) /J/. It is reasonable to 
set of sample velocity fields, is 

given load {f,q}, then the 
the considered body consists of 

o~Z+s, UEC, eEE, D(e)=(u,e) (2) 

where Cis the set of stress fields from S which do not emerge beyond the yield surface 

C = {aE S:ud(x)ECxd for almost all r EG) (3) 

where D is the dissipation in the body, uniform of first power /1,8/ with respect to deforma- 
tion rates. 

The first of relations (2) indicate that the stress field u balances the specified load, 
the second that the field udoes not emerge beyond the yield surface, and the third that the 
deformation rates e are kinematically admissible. The last of relations (2) shows the associa- 
ted law in overall form /9/, and in it 

D (e) = t,p <r, e> 
(4) 

Formulation in the form of a pair of extremal problems. With the load 6 (in 
the considered here problems s replaces the load {I,q) , and for brevity is subsequently cal- 
led the load) and link the static (a,) and kinematic (p.) limit coefficients /9,10/ 

.a, = sup {p: p > 0, (I- ps E 2, UE C} (5) 
&=inf{D(e):eEE, <s,e>=l} 

In the theory of plasticity it is assumed that a, = ps, and the conditions that ensure 
this equality were recently indicated /9,11,12/. The common value of a,and p, is denoted by 
IL, and called the load safety factor. 

We call the problem (in stresses) of determining the extremum in (5) at which a,, --H, is 
achieved, and the (kinematic) problem of finding the extremum in (5) at which flII, -K, is reach- 
ed. 
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problem (2) has no solution when %< 1, and then 
e = 0. 

but when n,>i it is solvable, 
When n, = 1 the pair of extremals ((I, e) of problem H,, K, yields the solution of 

problem (2); conversely, if (e,e) is the solution of problem (2), 
ely, the extremals of H, and K,/g/. 

then (I and e are respectiv- 

of extremals in problems 
Thus the Proof of equality c(, = #Js and the attainment 

tic body. 
H,,K, are basic to the theory of the quasi-static of perfect plas- 

The formulation of problems H,,K, comprises the definition of space S,F of the set 
of kinematically admissible deformation rates E and of the set of sample velocity fields V. 

The S, F spaces. We represent the second rank metric tensors t in the form t = (td,t*), 
where 

td St _ +, t’+,kg 

and the respective spaces S and F irthe form Sd x S" and Fd x F. 
If, as stated above, the yield surfaces for all points of the body are contained in cer- 

tain Mises surfaces d-89 = R", i.e. the components of the stress tensor deviators are bound- 
ed, it is usual to assume that 

Sd e L,d ~h2) = (U: Uij I U*j, ~gk = 0, Uijd E: L, (Ja)} 

11“ \IL,d(Q)= 11 v=%,(Q, 

Then assuming the duality of spaces Sd and Fd, it is possible to set 

Fd= F&=Lld@)= {e :eij=eji,e,k=O,eij~L1(Q)) 

II e II L&Q,= 11 fi !k(Q) 

It can be shown that Sd = (Fl’,))‘. As usualx'represent the space of linear continuous func- 
tionals onspace X. The 
space (L”, $2)) 

The duality of Sd and Fd is also ensured, if Fd = Fp2) = (LZ (Q))‘. 
is formed by elements e for which eii = e,,, ekk = 0, ejj EL,'(Q). The norm of an 

element e in this space is equivalent to the norm 

11 e 11 = (Fj 11 eiJ i\tdQd"' 

As the S' and F we use the space 

LC(+(t:t = f tk%. tkk = La (sa,} 9 11 t ,,L/(Q) = ,,+ hr [LItpI 

Then the selection of Fa=Fd (i) yields the pair of spaces 

S=Sd x L**, F=F(l,=F& x LP’ 

Then S = F(,, and for every (J from S and every e from Fwe have 

(a,e> =<ad,ed) + (d,e‘) =Uijd(eijd) + U<j*(e+j*) = S U(Z).e(Z) dz 
Q 

The selection of Fd= F& yields a pair Of spaces 

S=Sdx La', F = F(I)= F& x Lb 

then F(,, = S'and for every u from S and every e from F we have 

(u,e)=($l,ed) + (ti,e')= Eijd(Gijd) + eij’(uij’) 

The sets V, E,Z. we use Vr or Vz as sets of sample velocity fields, and respectively 
2: = Z1 = @(VI))" or Z = 22 = (E(Vz))"; as noted above, it is possible to use in the capacity 
of V some other sets, without changing E' and x2. 

The aim of obtaining extreme values in (f~), i.e. the solvability of the quasi-static pro- 

blem of the theory of perfect plasticity, compels us to widen the sets E 0'). We take as set 

E the kinematically admissible deformation rate appearing in the statement of problem (5) and 

the suitable closing sets E(Vl), E(V*). We have, namely, the following four possibilities: 

where brackets with subscripts (1) denote closure in Fcl, and thosewith subscript (2) in weak 
* topology of F (1). 

Note that since the polar line of sets E(V'),E(V*) coincides with the polar lines of 

their closure, hence 

E=Elf = [E Wku- E = E.’ = [E (V1)]tlj 
E=El*=[E(V*#l), E=&2=[E(V2)]c,, 
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21 s (E (Vl))‘- (El')=' = (E#, X2 = (E (V’))o = (E13” = (Es’)” 

Variants of the statement of quasi-static problem of the theory of perfect 
plasticity. In conformity witi the possibility of different selection of spaces S, F and 
sets V,E we have four pairs of problems (5) enumerated by the sets i*i = 1~2 

(6) 

where the superscript s at a and p indicating the considered load is omitted. The prohlems of 

finding extremals in (6) are denoted, respectively, by Hj, Ki’ with the subscript s again 

omitted. 
me problems H1 and Kil(i= 1,2) may be formulated so that only deviatoric Ccenponents of 

tensors figure in them, Indeed, since d = 0 for every e frmn Eil, hence it is possible to 

introduce such sets E,la inFc(jd that 
El1 = Eild x {O), i = 1, 2 

which are obviously closed in F(l)d and in the weak * topology of F(zP 8 respectively. Then . 

the set of self-balancing stress fields can be represented in the form ~1 = 2nd X L' 5' Here 
Zld lies in sd, and it is evident that ,ld = (Elrd)" = (&ld)o, Finally, C = Cd X La, where Cd 

lies in Sd , and it is possible to introduce function p on ]F& 

LP(eP)=D ((ed,O))=:m$ <@,ed> =p""s @,I% ed= F& 
0 

Then obviously 

al=supCp:p~O,od-~suEZ1cl,~dCd) (7) 

fi+= inf(D"(&) :edE E:d, (sd,ed) = i}, t= 1,2 

In this case, if a(e) is the extremal of problem H1 (Krl), then &(ed) is the extremal of 
respective problem (7). And conversely, if od is the extremal of problem (7) in stresses, then 
ad +pg for any p from L2 (Q) is the extremal of problem fl; if ed is the extremal of the 

kinetic problem (7), then e = ed is the extremal of problem Iit? 

The duality of problem H,K and the attainment of extrema. TWO extremal pro- 
blems (in one of which the upper andinthe other the lower bound are sought) linked in a 
definite manner are usually called dual /l/. In such problems the upper bound does never ex- 
ceed the lower bound of the dual problem. The pair of problems (6) and (7) are in this sense 
dual, and from this follows that aj 6 bij (i, j = I, 2). This inequality expresses the known fact 
In the theory of plasticity that the static limit load factor is not higher than the kinematic. 

Sometimes only two such problems which are dual in the above sense and whose upper and 
lower bounds are the same are called dual. Subsequently, the duality is understood exactly 
as follows: for the problem considered duality means that the static and kinematic limit load 
factors are the same, 

Problems Hr and K1* are dual /9,11/. Since PI1 > pa1 (which obviously follows from the 
embedding of F,ll in Ezr) and a'< &', 
is also established 19,121: a== &“. 

hence plL = a1 = pal. The duality of problems Hz, Kae 

Extremes inkinematic problems K,‘,K12 w’ I# sets of kinematically admissible deformation 
rates El', EI* (i.e. in space F(,,) may not be attained. In other words, kinematic problems in 
space F(1) are unsolvable. An example of the problem with smooth date, which has no solution 
in F,,, is given-in /12/, In space F(,) kinematic problems are solvable. /9,14/. 

In problems in stresses H1 and H8the extremes are attainable /9,11,15/. In other words, 
the problems in stresses are solvable in S. 

The conditions that ensure the duality of problems Brand K,' as well as those ensuring 
the duality of problems H1 and KS2 generally separate different classes of plastic bodies. 
The differences concern the character of yield surface dependence, or what is the same, of 
the set CXd on point x of the body. ‘For the (very wide) class of bodies described abovethese 
OT other conditions are satisfied. fn that case a natural question arises about the relation 
of a1 and a' of problem H' to problem x2, and of problem Ki'to problem Ki2(i = 1,2). 

The equivalence of various statements of the problem of the theory of per- 
fect plasticity. In the case of fixed boundary (as2 = S,) the respective problems are equiv- 
alent and PI1 = a1 = fit1 = fil* = a2 -fis2 /12/, A similar statemeni can be obtained also in the 
case of mixed boundary conditions using data from /2/. 

Theorem. Le: a perfectly plastic medium of the considered type fill the bounded region 
Q of class Cl. Let S, be nonempty and W1 (Q, S,) = pl(Q. S,). 
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Then: 1) problems H’and H2 are equivalent in the sense that a1 = aI. if on 0 the 
maximum is reached in problem H2, then maximum a is reached also in problem HI, and cf max- 
imum is reached on T in problem H', then a pressure field p from L,(G) will be found such 
that on r $_Pg a maximum is reached in problem ff'; and 2) the functional Dwhose lower bound 
is sought in problem KiP (i = 1, 2) assumes the value t= on elements Et2 that lie outside 
the set Eil. hence the problems Ktl and Ki2 coincide. 

Remarks. 10. The Sufficient conditions of congruence of W1(R,S,) and F(Q,s,) are de- 
fined by Theorems 3.1 and 3.2 in /2/. 

2O. The pressure field p is uniquely defined by the deviatoric component 5. More ex- 
actly, if TV and zz belong to 21, their deviatoric components coincide, and (71 = T1 - p*g, 02 = 
lip& belongs to Zp, then obviously, el= 0, when S,# 0 and a,--az=cg, where c is an 
arbitrary constant, when s,= .@. 

Proof. If u - PS for some p > 0 and (I from C belongs to X2, then obviously, 
belongs to x1, and conversely, 

u - ps 
when T - ps for some p>O and T from C belongs to X1, then 

by the theorem 5.2 of /2/ a pressure field p from L,(Q) 
belongs to EZ. 

will be found such that r - ps ~-- pg 
Then evidently together with t also 7 +pg belongs to C. This proves the 

first statement of the theorem. 
Note that D(e)= j-00 for e when e"# 0. Hence problem Ki" coincides with the similar 

problem in which Et2 is exchanged for its intersection with the set FciP x (0); that inter- 
section is subsequently denoted by Ei,oS. Thus for proving the second assertion of the theorem 
it is sufficient to check that El1 = Eiso2. 

In turn, the last equality is equivalent to relation (Ei')" = (Ei,,,*)". Indeed, the sets Eil, 

E*,0Z are convex, balanced and closed (when i = 1 in F(r) and when i = 2 in the weak * topol- 
ogy of F(a) ) . Then by the theorem about the bipolar line /7/E,' = (Ei1)",Ei,02 = (Ei,Oz)OfO where- 
from follows the idicated equivalence. 

Since Et' is contained in Et,OB, then (Eil)" contains (Ei,a2)", and it remains to verify that 
(El')" is embeded in (El,oa)o. Let r belong to (E,')" = El, then by Theorem 5.2 in /2/ a p from 
La(Q) will be found such that 7 fpg belongs to 2" = (Eta)". On the other hand, -_pg belongs 
to (F(ljd X {O})O and then evidently 

7=(7 + pgl + (-I%)E(&' fl 0% x W"=(~,o)" 

which completes the proof 

Corollary. Under the theorem conditions the following relations are valid: 

s = fir' = a' = Pa' = pr* = cr = Pa" 

Thus for calculating the load margine coefficient (when conditions of the theorem are 
satisfied) it is possible to use either problem (6) or (7). 

Note that the functional D is convex and positively uniform of first power and, by virtue 
of condition ad.& <R' , for the considered class of media Da(e)dRllell on Fgji. Then for 

determining its lower bound &I= n the set E,' can be replaced everywhere by the set E (VI) that 
is dense in it or, for instance, E(Tl)). In other words, it is always possible to use the 
sequence of smooth velocity fields as the minimizing sequence in the kinematic problem. 

Finally, if the load margin coefficients determined or estimated using the extremal prc 
blem in stresses, the sphericalcomponentof the utilized stress fields can be excluded from 
consideration. Since n = CA it is possible to use Zl as the set of self-balancing stress 
fields. Since together with any stress fields r= (~$7~) belonging to Z1 and C, and the 

stress field r'=(~~,o) belongs to these sets, hence in problem II? we can limit ourselves. for 

instance, to stress fields with zero spherical components. On the other hand, if it is neces- 

sary to determine the true stress (for, say, determining the stresses in technological pro- 

blems of the theory of placticity), it is necessary to consider the problem in complete state- 
ment of Hz. 
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